当前位置:三火通信 > 资料中心 > 行业资讯 >

行业资讯NEWS

什么是NB-IoT核心网?

  大家都知道的,尽管LTE和NB-IoT一脉同气,但LTE的设计目标是高速率、大流量,而NB-IoT为物联网“间歇传送小数据”而生,两者方向相反。因此,LTE核心网EPS也不再适应NB-IoT应用,需要对其进行优化。

  

  为了提升NB-IoT系统的小数据的传输效率,3GPPSA2工作组于2015年7月开始研究CIoTEPS优化构架,提出了CIoTEPS需支持四大功能:

  

  ①支持超低功耗物联网终端

  ②支持每小区连接大量物联网设备

  ③支持窄带频谱无线接入技术

  ④支持物联网增强覆盖

  

  并进行功能简化,裁剪了LTEEPS的四项功能:

  

  ①不提供紧急呼叫服务

  ②不支持流量卸载,如本地lP接入(LIPA)和选择性IP流量卸载

  ③在EPS连接管理上,只支持IDLE模式下的重选,不支持CONNECTED模式下的切换

  ④不支持建立GBR承载和专用承载

  

  最终,3GPP提出了两种优化方案:控制面优化传输方案(C-PlaneCIoTEPSoptimization)和用户面优化传输方案(U-PlaneCIoTEPSoptimization)。对于物联网终端,必须支持“控制面优化传输方案”,可选支持“用户面优化传输方案”。

  

  控制面优化传输方案  

  控制面优化传输方案使得小数据包可以传输于控制面上,数据以非接入层协议数据单元(NASPDU)的格式封装于控制面信令消息来传输,其概念如同商场购物,若消费者只购买少量商品,可经由指定的快速通道结账。

  

  这一方案可在传输数据时减少了控制面信令开销,因此有助于降低终端功耗和减少使用频带。

  

  如上图所示,控制面优化传输方案支持IP数据和非IP数据传输,传输路径可分为两条:①通过S-GW传送到P-GW再传送到应用服务器(CIoTServices);②通过SCEF(ServiceCapabilityExposureFunction)连接到应用服务器,该路径仅支持非IP数据传输。

  

  根据传输路径和是否支持IP数据传输,可分为三种传输模式:

  

  传输路径①(IP数据传输)

  

  传输路径为S-GW到P-GW再到应用服务器,可沿用现有的IP通信技术快速部署NB-IoT,缺点是安全性低,且不经过SCEF,电信运营商仍为管道角色。

  

  传输路径①(非IP数据传输)

  

  传输路径仍为S-GW到P-GW再到应用服务器,但由于已无IP地址传输数据包,因此在P-GW上必须要有NB-IoT终端的ID与AS的IP地址+端口号的对应关系,才能将数据包正确传送在SGi的界面上,这种方式称为UDP/IP的点对点隧道(Point-to-Point(PtP)Tunneling)技术。隧道的参数,也就是目的地IP地址与UDP端口号需事先配置于P-GW上,对NB-IoT终端和AS之间传送的数据来说,P-GW是一个透明的传输节点。

  

  这种方式安全性高且省电,但需要开发新的点对点隧道技术。

  

  传输路径②(非IP数据传输)

  

  即通过SCEF传递Non-IP数据,这条路径仅支持非IP数据传输,属于Non-IP专属解决方案。这种方式优点较多,安全性高、省电,且运营商能创造新的商业价值,但需新建SCEF网元节点,需开发新的API技术。

  

  SCEF

  

  SCEF为NB-IoT新增加的节点,其通过API接口向AS提供服务,而非直接发送数据,使得电信营运商不再只是管道,而是可以将业务能力安全地开放给第三方业务供应商,实现对物联网的大数据分析以创造新的商业价值。

  

  SCEF构架如上图所示,鉴于安全性考虑,SCEF放置于运营商信任的网域中(TrustDomain),并通过OMA(OpenMobileAlliance),GSMA(GroupeSpecialeMobileAssociation),或其他标准组织(StandardisationBodies,SDOs)的API接入服务,同时,SCEF的API支持多种不同类型,如DIAMETER、RESTfulAPIs与XMLoverHTTP等,使得SCEF可以更灵活应用于不同的网络中。NetworkEntity则指HSS、MME、P-GW、PCRF或与计费、安全相关的网络节点。

  

  C-SGN

  

  C-SGN,即CIoTServingGatewayNode,是控制面优化传输方案引入的新节点,该节点是由LTEEPS的控制面节点MME、用户面节点S-GW和P-GW的最小化功能合并而成的单个逻辑实体,C-SGN功能也可以部署在现网EPS的MME中。

  

  HLCom

  

  在控制面优化传输方案中,可引入了HLCom机制,即OptimizationtosupportHighLatencyCommunication,该机制将下行数据缓存在S-GW中。由于NB-IoT终端通过PSM和eDRX等技术来间歇性接收数据,以达到省电的目的,当NB-IoT终端在休眠状态时,S-GW将下行数据缓存,直到终端被唤醒后才将这些缓存的数据下发给终端。

  

  用户面优化传输方案

  

  数据传输的方式与LTEEPS一样采用用户面承载,但是,该优化方案在RRC层引入了挂起(Suspend)和恢复(Resume)两种新状态以适应物联网数据的间歇传输特性,同时要求NB-IoT终端、eNB和MME存储连接信息,以快速恢复重建连接,简化信令流程,提升传输效率。

  

  经过这么一优化,承载可以按需的方式建立,因而可降低终端功耗和支持单小区大规模物联网设备连接。该方案除了支持现有EPS功能外,还可以支持通过P-GW传输非IP数据。

  

  RRCSuspend流程

  

  如上图所示,该过程由eNB激活,释放NB-IoT终端与eNB之间的RRC连接,以及eNB与S-GW之间的S1-U承载。

  

  步骤(1)和(2):

  

  eNB发送UEContextSuspendRequest,并通过MME向S-GW发起释放与NB-IoT终端相关的承载信息。

  

  步骤(3):

  

  S-GW释放eNB与NB-IoT终端相关的S1-U承载。具体而言,S-GW仅释放eNB地址和下行隧道端点标识符(TEID),并继续存储其他信息。

  

  步骤(4)和(5):

  

  在S-GW处完成S1-U承载释放后,eNB通过MME接收UEContextSuspendResponse通知。

  

  步骤(6)和(7):

  

  eNB存储NB-IoT终端的AccessStratum(AS)信息、S1-AP连接信息和承载信息,并向NB-IoT终端发送RRCConnectionSuspend消息。

  

  步骤(8):

  

  MME为NB-IoT终端存储S1-AP连接信息和承载信息,并进入IDLE状态。

  

  步骤(9):

  

  当接收到来自eNB的RRCConnectionSuspend消息后,NB-IoT终端存储AS信息,并IDLE状态。

  

  RRCResume流程

  

  如上图所示,该过程重新建立(恢复)处于Suspend状态的NB-IoTUE与eNB之间的RRC连接,以及eNB与S-GW之间的释放的S1-U承载。Resume过程由NB-IoT启动和激活。

  

  步骤(1)和(2):

  

  首先使用由RRCSuspend过程中存储的AS信息来恢复与网络的连接。

  

  步骤(3):

  

  此时,eNB对NB-IoT终端执行安全检查,并向NB-IoT终端提供恢复的无线承载列表,且同步NB-IoTUE和eNB之间的EPS承载状态。

  

  步骤(4):

  

  eNB向MME发送UEContextResumeRequest,以通知其与NB-IoT终端的连接已经安全地恢复。

  

  步骤(5)和(6):

  

  从eNB接收到该恢复通知后,MME恢复NB-IoT终端的S1-AP连接信息和承载信息,进入CONNECTED状态,并向eNB发送UEContextResumeResponse消息(包括S-GW地址和S1-AP连接信息)。

  

  步骤(7):

  

  现在NB-IoT终端可以向S-GW发送上行数据。

  

  步骤(8)和(9):

  

  MME通过ModifyBearerRequest消息向S-GW发送eNB地址和下行链路TEID,以重建NB-IoT终端与S-GW之间的下行链路的S1-U承载。

  

  步骤(10)和(11):

  

  S-GW向MME发送ModifyBearerResponse消息,然后开始传输下行数据。

  

  值得一提的是,当S-GW接收到下行数据的同时NB-IoT终端处于Suspend状态,此时,S-GW将缓存数据包,同时在S-GW和MME之间初始化DownlinkDataNotification过程,然后MME寻呼NB-IoT终端,由此通过NB-IoT终端启动激活连接Resume流程。

标签: NB-IoT NB-IoT系统

[返回上一页]

上一篇:为什么说频谱资源是NB-IoT、LoRa的重要“阵地”

下一篇:中国联通:即将“集采NB-IoT模组”

产品推荐